Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Caixia Yin, ${ }^{\text {a }}$ Fangjun Huo, ${ }^{\text {b }}$
Fei Gao, ${ }^{a}$ + Jianping Guo ${ }^{b}$ and Pin Yang ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Institute of Molecular Science, Chemical Biology and Molecular Engineering, Laboratory of Education Ministry, University of Shanxi,
Taiyuan, Shanxi 030006, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Chemical Engineering, University of Shanxi, Taiyuan, Shanxi 030006, People's Republic of China

+ Additional correspondence author
Correspondence e-mail: yangpin@sxu.edu.cn

Key indicators

Single-crystal X-ray study
$T=183 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.078$
$w R$ factor $=0.142$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,6-Bis(3,5-dimethylpyrazol-1-ylmethyl)-4-methylphenol

The crystal structure of the title compound, $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}$, has been determined in the monoclinic space group $P 2_{1} / c$. The two pyrazole substituents are arranged trans to each other; the dihedral angle between them is $83.9(1)^{\circ}$. There is an intramolecular hydrogen bond, with an $\mathrm{O} \cdots \mathrm{N}$ distance of 2.769 (4) \AA, and an intermolecular hydrogen bond, with an $\mathrm{O} \cdots \mathrm{N}$ distance of 3.197 (4) \AA.

Comment

Like other tripod multidentate ligands, the pentadentate 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)-4-methylphenol, (I), has a good capacity for coordination with transition metals ions, giving rise to chelate complexes with intense colors.

(I)

Suzuki et al. (1981) linked two bis(2-pyridylmethyl)amine groups to two arms of 2,6-bis(chloromethyl)-4-methylphenol, resulting in a tripod multidentate ligand, 2,6-bis[bis(2-pyridylmethyl)-amino methyl]-4-methylphenol, $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{6} \mathrm{O}$. In the current work, we have joined two 3,5-dimethylpyrazole groups to two arms of 2,6-bis(chloromethyl)-4-methylphenol and produced a new pentadentate ligand, (I). As the most stable configuration, the two pyrazole groups of the molecule are arranged trans to each other, with a dihedral angle of $83.9(1)^{\circ}$. The compound acts as a versatile ligand for metal ions (such as Zn^{2+}) by coordinating through pyrazole N and hydroxy O atoms after deprotonation and intramolecular rotation.

The geometric parameters of (I) are listed in Table 1, and the molecular conformation and crystal packing are illustrated in Figs. 1 and 2. .

Experimental

Compound (I) was synthesized via a modification of the method of Kamaras et al. (1994). The smaller ligand, 3,5-dimethylpyrazole, which acts as the chelating arm in the target compound, was prepared according to the method of Wiley \& Hexner (1963). To a solution of 3,5-dimethylpyrazole in dimethylformamide, containing NaH , was added dropwise 2,6-bis(chloromethyl)-4-methylphenol, with vigorous stirring at room temperature (yield 80%; m.p. 398 K). 2,6-Bis[1-(3,5-

Received 15 September 2003
Accepted 13 October 2003
Online 23 October 2003

Figure 1
A view of the molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
dimethyl)pyrazolemethyl]-4-methylphenol (100 mg) was dissolved in $\mathrm{CHCl}_{3}(2 \mathrm{ml})$, and the solution was allowed to evaporate slowly over several days. Brown crystals suitable for X-ray diffraction were collected once all of the solution had evaporated.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}$
$M_{r}=324.42$
Monoclinic, $P 2_{1} / c$
$a=9.508(3) \AA \AA$
$b=18.747(6) \AA$
$c=10.116(3) \AA$
$\beta=105.085(5)^{\circ}$
$V=1741.0(9) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.984, T_{\text {max }}=0.992$
7045 measured reflections
$D_{x}=1.238 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8255
\quad reflections
$\theta=2.4-19.6^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=183(2) \mathrm{K}$
Slab, colorless
$0.2 \times 0.2 \times 0.1 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.078$
$w R\left(F^{2}\right)=0.142$
$S=0.98$
3053 reflections
217 parameters

Figure 2
The crystal packing of (I), viewed down the b axis.

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{N} 1$	0.84	1.95	$2.769(4)$	163
O1-H1 2 N 2	0.84	2.56	$3.197(4)$	133

All H atoms were initially located in a difference Fourier map. They were then constrained to as riding, with $\mathrm{C}-\mathrm{H}=0.98-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$ of the parent atom. .

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000) and SHELXTL/PC (Sheldrick, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC; software used to prepare material for publication: $S H E L X T L / P C$.

The authors sincerely thank the National Natural Science Foundation of China and the Provincial Natural Foundation of Shanxi, People's Republic of China, for support.

References

Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Kamaras, P., Cajulis, M. C., Rapta, M., Brewer, G. A. \& Jameson, G. B. (1994). J. Am. Chem. Soc. 116, 10334-10335.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G.M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Sheldrick, G. M. (1999). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Suzuki, M., Kanatomi, H. \& Murase, I. (1981). Chem. Lett. pp. 1745-1748.
Wiley, R. H. \& Hexner, P. E. (1963). Org. Synth. Collect. Vol. IV, pp. 351-353.

