organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Caixia Yin,^a Fangjun Huo,^b Fei Gao,^a+ Jianping Guo^b and Pin Yang^a*

^aInstitute of Molecular Science, Chemical Biology and Molecular Engineering, Laboratory of Education Ministry, University of Shanxi, Taiyuan, Shanxi 030006, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, University of Shanxi, Taiyuan, Shanxi 030006, People's Republic of China

+ Additional correspondence author

Correspondence e-mail: yangpin@sxu.edu.cn

Key indicators

Single-crystal X-ray study T = 183 K Mean σ (C–C) = 0.004 Å R factor = 0.078 wR factor = 0.142 Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

2,6-Bis(3,5-dimethylpyrazol-1-ylmethyl)-4-methylphenol

The crystal structure of the title compound, $C_{19}H_{24}N_4O$, has been determined in the monoclinic space group $P2_1/c$. The two pyrazole substituents are arranged *trans* to each other; the dihedral angle between them is 83.9 (1)°. There is an intramolecular hydrogen bond, with an O···N distance of 2.769 (4) Å, and an intermolecular hydrogen bond, with an O···N distance of 3.197 (4) Å.

Comment

Like other tripod multidentate ligands, the pentadentate 2,6bis(3,5-dimethylpyrazol-1-ylmethyl)-4-methylphenol, (I), has a good capacity for coordination with transition metals ions, giving rise to chelate complexes with intense colors.

Suzuki *et al.* (1981) linked two bis(2-pyridylmethyl)amine groups to two arms of 2,6-bis(chloromethyl)-4-methylphenol, resulting in a tripod multidentate ligand, 2,6-bis[bis(2pyridylmethyl)-amino methyl]-4-methylphenol, $C_{33}H_{34}N_6O$. In the current work, we have joined two 3,5-dimethylpyrazole groups to two arms of 2,6-bis(chloromethyl)-4-methylphenol and produced a new pentadentate ligand, (I). As the most stable configuration, the two pyrazole groups of the molecule are arranged *trans* to each other, with a dihedral angle of 83.9 (1)°. The compound acts as a versatile ligand for metal ions (such as Zn^{2+}) by coordinating through pyrazole N and hydroxy O atoms after deprotonation and intramolecular rotation.

The geometric parameters of (I) are listed in Table 1, and the molecular conformation and crystal packing are illustrated in Figs. 1 and 2. .

Experimental

Compound (I) was synthesized *via* a modification of the method of Kamaras *et al.* (1994). The smaller ligand, 3,5-dimethylpyrazole, which acts as the chelating arm in the target compound, was prepared according to the method of Wiley & Hexner (1963). To a solution of 3,5-dimethylpyrazole in dimethylformamide, containing NaH, was added dropwise 2,6-bis(chloromethyl)-4-methylphenol, with vigorous stirring at room temperature (yield 80%; m.p. 398 K). 2,6-Bis[1-(3,5-

Received 15 September 2003 Accepted 13 October 2003 Online 23 October 2003

01740 Caixia Yin et al. \cdot C₁₉H₂₄N₄O

Figure 1

A view of the molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

dimethyl)pyrazolemethyl]-4-methylphenol (100 mg) was dissolved in $CHCl_3$ (2 ml), and the solution was allowed to evaporate slowly over several days. Brown crystals suitable for X-ray diffraction were collected once all of the solution had evaporated.

Crystal data

C ₁₉ H ₂₄ N ₄ O	$D_x = 1.238 \text{ Mg m}^{-3}$
$M_r = 324.42$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 8255
a = 9.508 (3) Å	reflections
b = 18.747 (6) Å	$\theta = 2.4 - 19.6^{\circ}$
c = 10.116 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 105.085 \ (5)^{\circ}$	T = 183 (2) K
V = 1741.0 (9) Å ³	Slab, colorless
Z = 4	$0.2 \times 0.2 \times 0.1 \text{ mm}$
Data collection	

Bruker SMART CCD area-detector	3053 independent reflections
diffractometer	1641 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.066$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 11$
$T_{\min} = 0.984, T_{\max} = 0.992$	$k = -22 \rightarrow 17$
7045 measured reflections	$l = -11 \rightarrow 12$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.078$ $wR(F^2) = 0.142$ S = 0.983053 reflections 217 parameters

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0393P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.21 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$

Figure 2 The crystal packing of (I), viewed down the *b* axis.

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1···N1	0.84	1.95	2.769 (4)	163
$O1-H1\cdots N2$	0.84	2.56	3.197 (4)	133

All H atoms were initially located in a difference Fourier map. They were then constrained to as riding, with C–H = 0.98–1.00 Å and $U_{\rm iso}({\rm H}) = 1.2$ or $1.5 U_{\rm eq}({\rm C})$ of the parent atom.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000) and *SHELXTL/PC* (Sheldrick, 1999); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL/PC*; software used to prepare material for publication: *SHELXTL/PC*.

The authors sincerely thank the National Natural Science Foundation of China and the Provincial Natural Foundation of Shanxi, People's Republic of China, for support.

References

- Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Kamaras, P., Cajulis, M. C., Rapta, M., Brewer, G. A. & Jameson, G. B. (1994). J. Am. Chem. Soc. 116, 10334–10335.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G.M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1999). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Suzuki, M., Kanatomi, H. & Murase, I. (1981). Chem. Lett. pp. 1745–1748.
- Wiley, R. H. & Hexner, P. E. (1963). Org. Synth. Collect. Vol. IV, pp. 351-353.